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The f i r s t  and second boundary-value  p r o b l e m s  as well  as the l inear  boundary-va lue  inverse  
heat -conduct ion p rob l em  with fixed heat  co l lec tor  and boundary have been solved. Account of 
the finite hea t -p ropaga t ion  veloci ty  i n c r e a s e s  the boundary-va lue  inverse  heat -conduct ion 
p rob lem stabil i ty.  

At the p r e s e n t  t ime two approaches  ex i s t  to solve boundary-va lue  inverse  heat -conduct ion  p rob l ems  
(IHCP). The f i r s t  group of methods of solving boundary-value  IHCP (direct  methods) use  the parabol ic  equa -  
tion of heat  conductivity or  its genera l  f o r m  [1-6]. I t  is well  known [6] that the boundary-value  IHCP for  the 
pa rabo l ic  equation of heat  conduction is i n c o r r e c t  due to its instabil i ty.  This  c i r cums tance  imposes  r e s t r i c -  
t ions on the p a r a m e t e r s  of calculat ion s chem es  used in solving the p rob l em (approximate  step in t ime ,  number  
of  i t e ra t ions ,  e tc . ) ,  and, consequently,  r e s t r i c t s  the accuracy  of the solutions obtained (par t icular ly  for  fas t  
flows and quickly va ry ing  p r o c e s s e s ) .  A second approach in solving the boundary-va lue  IHCP cons is t s  of using 
regu la r i zed  methods of its solution [5, 7, 8], in which one uses  the t rans i t ion  f r o m  the i n c o r r e c t  s ta tement  of 
the p rob lem to the c o r r e c t  one, which significantly enhances the stabil i ty of the boundary-value  IHCP. It  i s ,  
obviously,  poss ib le  to p ropose  many ways of this t rans i t ions .  Among the va r i e ty  of these  methods ,  one mus t  
choose those in bes t  a g r e e m e n t  withtthe r ea l  phys ica l  p r o c e s s e s  occur r ing  in heat  t r ans f e r .  It is shown below 
that  account  of the finite ra te  of heat  propagat ion  is a na tura l  " regu la r iz ing"  fac tor  which enhances the s tabi l i ty  
of boundary-va lue  IHCP. 

The hyperbol ic  heat -conduct ion equation [4, 9, 10] 

D2 02u 1 Ou c)2u - ~ -  + - - .  = o (1) 
a Ot Ox 2 

desc r ibe s  nonsta t ionary  heat -conduct ion p r o c e s s  m o r e  accura te ly  than does the parabol ic  equation. In this 
pape r  we der ive  s eve ra l  in tegra l  f o r m s  for  solving l inear  inverse  boundary-value  p rob l ems  of hea t  conduction 
in the one-d imens iona l  case ,  and a method of thei r  solution is given. At the s ame  t ime ,  the cor responding  
d i r ec t  boundary-va lue  p r o b l e m s  a re  solved for  a r b i t r a r y  conditions at  the boundaries .  During the p r o c e s s  of 
solving IHCP,  the suggested method can approx imate ly  de te rmine  the veloci ty  of hea t -p ropaga t ion ,  and, con-  
sequently,  the re laxa t ion  constant ,  which is an additional advantage of the method.  

Sta tement  and Solution of Di rec t  Boundary-Value  P r o b l e m s  for  a Semiinfinite Bar .  The t he rma l  flow 
q(x, t) is re la ted  as follows to the t e m p e r a t u r e  u(x, t),  obeying the hyperbol ic  equation [4, 9, 10]: 

0q _ ~ flu; 
O- t  + q = Ox TI ~- a~2" (2) 

Taking into account  the vanishing condition q(x, 0) = 0, Eq. (2) is eas i ly  in tegra ted  

q ( x ,  t )  = - -  - -  

Knowing the t e m p e r a t u r e  u(x, t),  by Eq. (2a) one 
stat ing the p rob l em  of heat ing a semiinfini te  ba r  

u (x, o) 

t 

l Ou (x, ~) exp [-- ( t - -  ~)/~]] d~ (2a) 
�9 0 X  
0 

can calculate  the t he rma l  flow in any point of the body. In 
(x6 [0, ~]) ,  we apply the initial homogeneous conditions 

Ou (x, 0) (3) = O; O. 
Ot 
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At the left  boundary of the bar (x = 0) we choose two types of boundary conditions 

u (0, t) = u~ (t) 

o r  

q (0, t) = q~ (t). 

(4a) 

(4b) 

It is assumed that temperature  ul(t ) of the medium and the thermal  flow ql(t) at the surface of the bar can be 
a rb i t r a ry  functions of time. Using Eq. (2), we replace boundary condition (4b) by the equivalent, but more 
convenient 

dq~ - -X  Ou(O, t) qt (/); q~(t) = n  - 7 ~ - q ~ .  (4c) 
Ox 

Corresponding to the type of boundary condition at infinity, one of the following requirements  must  be sa t i s -  
fied 

u (oo,  t) = 0; 0~ (oo,  t) 0. (5) 
Ox 

The problems stated are solved by the operator  method under the assumption that ~, a, fl are constant quanti-  
t ies.  The Laplace t ransforms of u(x, t), q(x, t), Ul(t), ql(t) and ql(t) are denoted by U(x, p), Q(x, p), UI(p), 
QI(P) and Q~(p), respectively.  In the t r ans form region we have two solutions, corresponding to the various 
types of boundary conditions: 

U ---- Vt (p)exp (--xfJ ~p~+ P/+I), (6a) 

U = Q? (p) exp (--x[~ Vrp 2 -~ pJq)/k~ Vrp-Z-+ - pit 1. (6b) 

Returning to function u(x, t), we obtain for it the corresponding expressions [11, 12]: 

13x t-~x I~ [ 2~- V'~-2- ~)2-- ~2x~ ] dT}, 
u=E(t--fJx){u,(t--fJx)exp(--x/2af~)+ ~ ,l ut(~) 1/(t__,)z__f~2xZ exp[--(t--~)/2,fl 

0 
(7a) 

t--~x 
,u=E(t--f~x)-~ [ q~ (X) 'o  [~-~q vz(t'~)2--~2x2]exp[--(t--T)/2~l]dT. 

0 
(7b) 

In Eqs. (7) E(0 is the function of unit jump [11], equal to 0 at $ < 0, and I 0 and It are  f i r s t -o rde r  Bessel  func- 
tions of an imaginary argument.  Integration by parts  of the r ight-hand side of Eq. (7b) with account of (4c) 
leads to a different  form of the solution u(x, t) for boundary condition (4b): 

t --~x 

0 
In Eq, (7c) the solution u(x, t) is expressed in t e rms  of the thermal  flow qi(t) on the bar ,  and not in t e rms  of the , 
auxil iary function ql(t). Introducing the dimensionless quantities 

Fo = at/x z, Fo' = az/x 2, y = aft~x, (8) 

Eqs. (7a) and (7b) can be writ ten in the form 

u (y, Fo) ~- E (Fo --  V) {u~ (Fo --  ~,) exp ( -- 1/2V) + 

where 

Fo--'r 
.i K (Fo-- Eft, V) ul (Fo') dFo'}, (9a~ 
0 

• ( F o ,  V) . . . . . .  ." 
2y l /Fo  ~ --  V ~ 

exp (-- Fo/2~), (9a*) 
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where  

u (y, Fo) = E (Vo - -  7) { - ~ q t  (Fo - -  7) exp (--  1/27) q- 
Fo--? 

K (Fo, ~/) = ~ Io ]/-F~ -~ VFo---f~_ 72 It g ~  exp (-- Fo/2?z). (9b*) 

The in tegra l  re la t ions  (9a), (9b) obtained between the t e m p e r a t u r e  u(y, Fo) inside the body and the t e m p e r a -  
ture  ul(Fo) at  the boundary of the bar  or  the t he rma l  flow at the sur face  of the ba r  can be used  to solve va r ious  
types of p rob lems .  If function ul(Fo ) Or ql(Fo) is known, Eqs. (9a), (gb), and (9a*), (9b*) a r e  the solutions of 
the cor responding  d i rec t  boundary-value  p r o b l e m s .  

Using the dominant  t e r m s  of the asympto t i c  Besse l  functions I 0 and It,  it can be shown that  under  the 
condition ( F o - F o ' )  > y the l imit ing transi t ion/~ -~ 0 in Eqs.  (9) leads to the cor responding  solutions of the 
boundary-va lue  p rob l ems  for  the parabol ic  equation of t he rma l  conduction. If/3 is sma l l ,  but fi # 0, then for  
smal l  Fo the solutions of (9) can differ  f r o m  the cor responding  solutions of the pa rabo l ic  equation; with in-  
c r ea s ing  Fo this d i f ference  diminishes .  The p rob l em of heat ing a semiinfini te  bar  with boundary conditions 
of the f i r s t  kind u t = const  was  t r ea t ed  in [10]. The physica l  e f fec ts  occur r ing  in the t rans i t ion  f r o m  a p a r a -  
bolic to a hyperbol ic  heat -conduct ion equation were  analyzed in s imi l a r  detail  (the p r e s e n c e  of a p ropaga t ing  
shock hea t  wave ,  r e s t r i c t i on  to a m a x i m u m  heat  flow and h e a t - t r a n s f e r  coeff ic ients ,  etc.) .  Obviously,  a 
noticeable d i f ference  in the solutions for  smal l  Fo can be obse rved  for  fas t  flows of intense t h e r m a l  p r o c e s s e s  
and p r o c e s s e s  at  v e r y  low t e m p e r a t u r e s .  

Solution of L inea r  Boundary-Value  IHCP. In tegra l  re la t ions  (9) can be used for  solving inverse  p rob l ems  
on r ecove r ing  the t e m p e r a t u r e  ul(Fo) or the t he rma l  flow ql0Fo) at the edge of the bar  f r o m  the t e m p e r a t u r e  
$(Fo) m e a s u r e d  in the in ternal  c ros s  sect ion of the bar  at  a dis tance x f r o m  the edge. In this case  Eqs. (9) 
a re  Vo l t e r r a  l inear  in tegra l  equations of the second kind for  the unknown functions zy(Fo) = {ut (Fo), qt (Fo)}: 

FO* 

u (Fo* ~- ?) = S K (Fo* - -  Fo" + ?, 7) zv (Fo') d Fo' + ~10zv (Fo*) exp (--  1/27). (10) 
0 

Here  

Fo* = Fo- -? ;  ~0 = l a n d ~ 0  : xy/k (10a) 

for  boundary conditions of the f i r s t  and second kind, r e spec t ive ly ,  and the kerne ls  K(Fo,  y) of Eq. (10) a re  de -  
t e rmined  by Eqs.  (9a*) and (9b*). To solve Eq. (10) one may  use  the wel l -known numer ica l  and analyt ic  methods 
[13], such as the Neumann s e r i e s ,  the col lect ion method,  applicat ion of quadra tu re  equat ions ,  etc.  

The p a r a m e t e r  y in the in tegra l  equation (10) can be e i ther  given or  unknown. In the l a t t e r  case  at  some 
definite value Y0 of the p a r a m e t e r  y,  the function zy0(Fo ) will be nea r  the r ea l  t e m p e r a t u r e  or  the t h e r m a l  flow 
at  the wal l ,  t he re fo re  it can be taken as the approx imate  solution of the boundary-value  I~ICP. The quantity 
1/~ 0 can be cons idered  to be the approx imate  value of the hea t -p ropaga t ion  veloci ty  in the solid. The quantity 
80 is mos t  s imply  de te rmined  as  follows. Putt ing in Eq. (10) Fo* = 0, we obtain a s imple  re la t ion  between the 
initial value zy(0) and the m e a s u r a b l e  t e m p e r a t u r e  u(Fo) 

z v (0) : u (?) exp (1/2,/)/%. (11) 

Due to the f in i teness  of the heat  propagat ion  veloci ty  the function u(Fo) mus t  have a discontinuity of f i r s t  kind 
at  Fo = Y0, t he re fo re  the quantity z~(0) as a function of y a lso  has  a discontinuity of f i r s t  kind at  y = ~'0. F igure  
1 shows the curve  u(Fo) used  in the numer i ca l  exper iment .  The Y0 value was  taken equal to Y0 = 0.06. In the 
same f igure we show the y dependence of the initial  z,/(0). The use  of the exper imen ta l  curves  for  u(Fo) in 
construct ing the function zy(0) leads to the consequence that ,  s t a r t ing  with some value of y ,  the quantity zy(0) 
i n c r e a s e s  quickly f r o m  the initial vanishing value.  This  boundary value of " /can  be approx imate ly  taken to be 

"Y0. 

We form the function @(~), taking into account the behavior of the solution zT(Fo) and its derivative 
dzy (Fo)/clFo: 

Fo* d2 V (Fo) ! (12) f1.< o. + , )_ !  + ,  7)z,(Fo')dFo'--llozv(Fo*)exp(X/2g)!J 4= bol[z,(Fo)ll~zb ' ~ . 
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Fig. 1. The re la t ive  t e m p e r a t u r e  u(Fo) at  a d is tance  x f r o m  
the edge of the ba r  and the cor responding  quantity ZT(0): 1) the 
function u(Fo); 2) behavior  of the init ial  value zT(0) at  the edge 
of the ba r ,  cons t ruc ted  by Eq. (11). 

Fig. 2. Dependence of the r e c o v e r e d  re la t ive  t e m p e r a t u r e  zT(Fo) 
at  the edge of the bar  for  va r ious  va lues  of T: 1, 2) exac t  and ca l -  
culated cu rves  of z T (Fo); 3) osci l la t ing curve  zT(Fo) for  ~ = 0.0601; 
4) z~/(Fo) for  T = 0.05. 

The no rms  in Eq. (12) a r e  taken in the L 2 space ,  and b o and bl a r e  weight coeff ic ients .  Since for  p a r a m e t e r  
va lues  T nea r  the T0, the solution zq/(0) osc i l l a tes  fo r  a sui table choice of the coeff icients  b 0 and b~, a min imum 
of the functional @ is achieved at  a continuous solution co r respond ing  to T = T0. T h e r e f o r e ,  the p a r a m e t e r  T0 
can be chosen by the condition 

(%) = min r  (~,). (12a) 
? 

Numer i ca l  calculat ions r e c o v e r i n g  the t e m p e r a t u r e  at the edge of the bar  f r o m  function u(Fo),  i l lus t ra ted  in 
Fig. 1, showed the e f fec t iveness  of choosing the p a r a m e t e r  To f r o m  Eqs. (12), (12a). Thus ,  as  a r e su l t  of 
numer i ca l  ca lcula t ions ,  the value T0 = 0.060001 was obtained ins tead of the exact  value Y0 = 0.06. In the ca l -  
culations it was  a s sumed  that the weight coeff icients  a r e  b 0 = bl = 1 and the functional @ was  rep laced  by the 
cor responding  sum ove r  a un i form par t i t ion  of the points Fo with step H = 0.02. In tegra l  equation (10) was 
solved by the method desc r ibed  below. F igure  2 (curves 1 and 2) shows the p rac t i ca l ly  coinciding exact  so lu-  
tion and r e su l t s  of calculat ions by Eqs.  (10), (12), and (12a). The osc i l la t ing  curves  zT(Fo) for  T = 0.061 > To 
and T = 0.05 < To a re  shown on curves  3 and 4. 

A method of solving in tegra l  equat ions,  based  on approx imat ing  the solution by discontinuous s tep func-  
t ions,  is widely used in engineer ing  p rac t i ce .  We apply this method to solve in tegra l  equation (10). We divide 
the in te rva l  I = [0, * Fomax]  into N subin te rva l s  Ik = [(k - 1)H, kH] by the points Fo k = kH, where  Fok = kH, 
where  H = FOmax/N. We solve Eq. (10), a s suming  that at  each  subinterval  I k the solution zT(Fo) is approx i -  
mated  by the function 

zv (Fo) = {z~ (kH) + z~, [(k - -  l) H]}/2; Fo EIk (13) 

In this way in tegra l  equation (10) r educes  to a s y s t e m  of a lgebra ic  equations with a t r i angu la r  m a t r i x  for  the 
values  of zT(kH) 

h 
X dk-tz.~ (lH) = a (kH + ?) - -  d~z.~ (0), (14) 
! ~ l  

where  

1 -H 
do = rio exp (--  1/27) + ~ ! K (H + ? - -  ~) d~, 

ab~ dl---=.~ K(k~+?--~)~,  k= l ,  2 , . . . ,N ,  

(14a) 

(14b) 
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dn-[= d~-z + d* �9 n - l + : ,  k- - t~ l ,  (14C) 

and the quantity zT(0) is determined by Eq. (11). The values of zT(kH) are conveniently calculated by using the 
recurrence equation.. 

1 { u ( k H  § " ~ l  zv (kH) ---- -~o 7) --  dhzv (0) --- ~ dh_tz v (IH)}. (I 5) 
l~l 

The calculations have shown that the e r ro r  in solving the integral equation (10) by the method suggested is 
small. It can be estimated in the usual way [14]. The spline method can be utilized to obtain a smooth solu- 
tion zT(Fo ). We point out that the Jordan lemma is satisfied for the Laplace transforms Ui(P) and Qi(P), ob- 
tained from Eq. (6) with account of expression (4c). Therefore ,  operation calculus methods can be used to 
find the original ul(Fo) and ql(Fo). 

Thus, account of the finite heat propagation velocity by means of the hyperbolic equation makes it pos-  
sible to solve the linear boundary-value IHCP accurately. The method suggested for solving the IHCP enables 
one to determine at the same time the heat propagation velocity. 

a 

P 
Fomax 

NOTATION 

is the thermal conductivity; 
is the thermal diffusivity; 
is the reciprocal  of heat propagation velocity; 
is the Laplace variable; 
is the maximum value of Fo. 
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